Jak mogę poprawić ten WebGL / GLSL image downsampling shader

Używam WebGL do bardzo szybkiej zmiany rozmiaru obrazów w aplikacji, nad którą pracuję. Napisałem shader GLSL, który wykonuje proste filtrowanie dwuliniowe na obrazach, które zmniejszam.

Działa dobrze w większości przypadków, ale jest wiele okazji, w których zmiana rozmiaru jest ogromna, np. z obrazu 2048x2048 do 110x110 w celu wygenerowania miniatury. W takich przypadkach jakość jest słaba i zbyt rozmyta.

Mój obecny shader GLSL jest jak follows:

uniform float textureSizeWidth;\
uniform float textureSizeHeight;\
uniform float texelSizeX;\
uniform float texelSizeY;\
varying mediump vec2 texCoord;\
uniform sampler2D texture;\
\
vec4 tex2DBiLinear( sampler2D textureSampler_i, vec2 texCoord_i )\
{\
    vec4 p0q0 = texture2D(textureSampler_i, texCoord_i);\
    vec4 p1q0 = texture2D(textureSampler_i, texCoord_i + vec2(texelSizeX, 0));\
\
    vec4 p0q1 = texture2D(textureSampler_i, texCoord_i + vec2(0, texelSizeY));\
    vec4 p1q1 = texture2D(textureSampler_i, texCoord_i + vec2(texelSizeX , texelSizeY));\
\
    float a = fract( texCoord_i.x * textureSizeWidth );\
\
    vec4 pInterp_q0 = mix( p0q0, p1q0, a );\
    vec4 pInterp_q1 = mix( p0q1, p1q1, a );\
\
    float b = fract( texCoord_i.y * textureSizeHeight );\
    return mix( pInterp_q0, pInterp_q1, b );\
}\
void main() { \
\
    gl_FragColor = tex2DBiLinear(texture,texCoord);\
}');

TexelsizeX i TexelsizeY są po prostu (1.0 / szerokość tekstury) i wysokość odpowiednio...

Chciałbym zaimplementować technikę filtrowania o wyższej jakości, najlepiej filtr[Lancosz] [1], który powinien dawać o wiele lepsze wyniki, ale wydaje mi się, że nie mogę zrozumieć, jak zaimplementować algorytm z GLSL, ponieważ jestem zupełnie nowy w WebGL i GLSL w ogóle.

Czy ktoś mógłby wskazać mi właściwy kierunek? Z góry dzięki.
Author: gordyr, 2013-01-16

1 answers

Jeśli szukasz resamplingu Lanczos, poniżej znajduje się program shader, którego używam w mojej bibliotece GPUImage open source:

Vertex shader:

 attribute vec4 position;
 attribute vec2 inputTextureCoordinate;

 uniform float texelWidthOffset;
 uniform float texelHeightOffset;

 varying vec2 centerTextureCoordinate;
 varying vec2 oneStepLeftTextureCoordinate;
 varying vec2 twoStepsLeftTextureCoordinate;
 varying vec2 threeStepsLeftTextureCoordinate;
 varying vec2 fourStepsLeftTextureCoordinate;
 varying vec2 oneStepRightTextureCoordinate;
 varying vec2 twoStepsRightTextureCoordinate;
 varying vec2 threeStepsRightTextureCoordinate;
 varying vec2 fourStepsRightTextureCoordinate;

 void main()
 {
     gl_Position = position;

     vec2 firstOffset = vec2(texelWidthOffset, texelHeightOffset);
     vec2 secondOffset = vec2(2.0 * texelWidthOffset, 2.0 * texelHeightOffset);
     vec2 thirdOffset = vec2(3.0 * texelWidthOffset, 3.0 * texelHeightOffset);
     vec2 fourthOffset = vec2(4.0 * texelWidthOffset, 4.0 * texelHeightOffset);

     centerTextureCoordinate = inputTextureCoordinate;
     oneStepLeftTextureCoordinate = inputTextureCoordinate - firstOffset;
     twoStepsLeftTextureCoordinate = inputTextureCoordinate - secondOffset;
     threeStepsLeftTextureCoordinate = inputTextureCoordinate - thirdOffset;
     fourStepsLeftTextureCoordinate = inputTextureCoordinate - fourthOffset;
     oneStepRightTextureCoordinate = inputTextureCoordinate + firstOffset;
     twoStepsRightTextureCoordinate = inputTextureCoordinate + secondOffset;
     threeStepsRightTextureCoordinate = inputTextureCoordinate + thirdOffset;
     fourStepsRightTextureCoordinate = inputTextureCoordinate + fourthOffset;
 }

Fragment shader:

 precision highp float;

 uniform sampler2D inputImageTexture;

 varying vec2 centerTextureCoordinate;
 varying vec2 oneStepLeftTextureCoordinate;
 varying vec2 twoStepsLeftTextureCoordinate;
 varying vec2 threeStepsLeftTextureCoordinate;
 varying vec2 fourStepsLeftTextureCoordinate;
 varying vec2 oneStepRightTextureCoordinate;
 varying vec2 twoStepsRightTextureCoordinate;
 varying vec2 threeStepsRightTextureCoordinate;
 varying vec2 fourStepsRightTextureCoordinate;

 // sinc(x) * sinc(x/a) = (a * sin(pi * x) * sin(pi * x / a)) / (pi^2 * x^2)
 // Assuming a Lanczos constant of 2.0, and scaling values to max out at x = +/- 1.5

 void main()
 {
     lowp vec4 fragmentColor = texture2D(inputImageTexture, centerTextureCoordinate) * 0.38026;

     fragmentColor += texture2D(inputImageTexture, oneStepLeftTextureCoordinate) * 0.27667;
     fragmentColor += texture2D(inputImageTexture, oneStepRightTextureCoordinate) * 0.27667;

     fragmentColor += texture2D(inputImageTexture, twoStepsLeftTextureCoordinate) * 0.08074;
     fragmentColor += texture2D(inputImageTexture, twoStepsRightTextureCoordinate) * 0.08074;

     fragmentColor += texture2D(inputImageTexture, threeStepsLeftTextureCoordinate) * -0.02612;
     fragmentColor += texture2D(inputImageTexture, threeStepsRightTextureCoordinate) * -0.02612;

     fragmentColor += texture2D(inputImageTexture, fourStepsLeftTextureCoordinate) * -0.02143;
     fragmentColor += texture2D(inputImageTexture, fourStepsRightTextureCoordinate) * -0.02143;

     gl_FragColor = fragmentColor;
 }

Jest to stosowane w dwóch przebiegach, z pierwszym wykonaniem poziomego próbkowania w dół, a drugi pionowego próbkowania w dół. Uniformy texelWidthOffset i texelHeightOffset są ustawiane na przemian na 0,0 oraz ułamek szerokości lub wysokości pojedynczego piksela na obrazie.

I hard-calculate the texel przesunięcia w Vertex shader, ponieważ pozwala to uniknąć zależnych odczytów tekstur na urządzeniach mobilnych, które tym kieruję, co prowadzi do znacznie lepszej wydajności. To trochę gadatliwe.

Wyniki tego Lanczos resamplingu:

Lanczos

Normal bilinear downsampling:

Bilinear

Nearest-neighbor downsampling:

Najbliższy-sąsiad

 21
Author: Brad Larson,
Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/agent_stack/data/www/doraprojects.net/template/agent.layouts/content.php on line 54
2013-01-16 21:26:18