Najbardziej zoptymalizowany sposób konkatenacji w łańcuchach

Zawsze natknęliśmy się na wiele sytuacji na co dzień, w których musimy wykonywać żmudne i bardzo wiele operacji łańcuchowych w naszym kodzie. Wszyscy wiemy, że manipulacje strunami są kosztownymi operacjami. Chciałbym wiedzieć, która z dostępnych wersji jest najtańsza.

Najczęstszą operacją jest konkatenacja (jest to coś, co możemy kontrolować do pewnego stopnia). Jak najlepiej połączyć std:: strings w C++ i różne obejścia, aby przyspieszyć konkatenacja?

Znaczy siÄ™,

std::string l_czTempStr;

1).l_czTempStr = "Test data1" + "Test data2" + "Test data3";

2). l_czTempStr =  "Test data1"; 
    l_czTempStr += "Test data2";
    l_czTempStr += "Test data3";

3). using << operator

4). using append()

Również, czy mamy jakąkolwiek korzyść z używania Cstringa nad std:: string?

Author: chema989, 2013-09-19

6 answers

Oto mały zestaw testów:

#include <iostream>
#include <string>
#include <chrono>
#include <sstream>

int main ()
{
    typedef std::chrono::high_resolution_clock clock;
    typedef std::chrono::duration<float, std::milli> mil;
    std::string l_czTempStr;
    std::string s1="Test data1";
    auto t0 = clock::now();
    #if VER==1
    for (int i = 0; i < 100000; ++i)
    {
        l_czTempStr = s1 + "Test data2" + "Test data3";
    }
    #elif VER==2
    for (int i = 0; i < 100000; ++i)
    {
        l_czTempStr =  "Test data1"; 
        l_czTempStr += "Test data2";
        l_czTempStr += "Test data3";
    }
    #elif VER==3
    for (int i = 0; i < 100000; ++i)
    {
        l_czTempStr =  "Test data1"; 
        l_czTempStr.append("Test data2");
        l_czTempStr.append("Test data3");
    }
    #elif VER==4
    for (int i = 0; i < 100000; ++i)
    {
        std::ostringstream oss;
        oss << "Test data1";
        oss << "Test data2";
        oss << "Test data3";
        l_czTempStr = oss.str();
    }
    #endif
    auto t1 = clock::now();
    std::cout << l_czTempStr << '\n';
    std::cout << mil(t1-t0).count() << "ms\n";
}

On coliru :

Skompiluj z następującym:

Clang++ - std=c++11-O3-DVER=1-Wall-pedantic-pthread main.cpp

21.6463 ms

- DVER=2

6.61773 ms

- DVER=3

6.7855 ms

- DVER=4

102.015 ms

Wygląda na to, że 2), += jest zwycięzcą.

(także kompilowanie z i bez -pthread wydaje się wpływać na czas)

 57
Author: Jesse Good,
Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/agent_stack/data/www/doraprojects.net/template/agent.layouts/content.php on line 54
2017-08-07 18:40:41

Oprócz innych odpowiedzi...

Zrobiłem obszerne benchmarki na temat tego problemu jakiś czas temu i doszedłem do wniosku, że najbardziej wydajnym rozwiązaniem (GCC 4.7 & 4.8 na Linuksie x86 / x64 / ARM) w wszystkich przypadkach użycia jest najpierw reserve() łańcuch wynikowy z wystarczającą ilością miejsca do przechowywania wszystkich połączonych łańcuchów, a następnie tylko append() je (lub użyj operator +=(), to nie robi różnicy).

Niestety wygląda na to, że usunąłem ten benchmark więc masz tylko moje słowo (ale ty można łatwo dostosować benchmark Matsa Peterssona, aby sam to zweryfikować, jeśli moje słowo nie wystarczy).

W skrócie:

const string space = " ";
string result;
result.reserve(5 + space.size() + 5);
result += "hello";
result += space;
result += "world";

W zależności od dokładnego przypadku użycia (liczba, typy i rozmiary połączonych łańcuchów), czasami ta metoda jest zdecydowanie najbardziej efektywna, a innym razem jest na równi z innymi metodami, ale nigdy nie jest gorsza.


Problem w tym, że jest to naprawdę bolesne, aby obliczyć całkowity wymagany rozmiar z góry, zwłaszcza podczas mieszania liter ciągów i std::string (powyższy przykład jest wystarczająco jasny w tej sprawie, jak sądzę). Konserwacja takiego kodu jest absolutnie okropna, gdy tylko zmodyfikujesz jeden z literałów lub dodasz kolejny ciąg znaków do konkatenacji.

Jednym podejściem byłoby użycie sizeof do obliczenia wielkości liter, ale IMHO tworzy to tyle bałaganu, co rozwiązuje, konserwacja jest nadal okropna: {]}

#define STR_HELLO "hello"
#define STR_WORLD "world"

const string space = " ";
string result;
result.reserve(sizeof(STR_HELLO)-1 + space.size() + sizeof(STR_WORLD)-1);
result += STR_HELLO;
result += space;
result += STR_WORLD;
W 2006 roku został wybrany do Izby Gmin.]}

W końcu zdecydowałem się na zestaw różne szablony, które sprawnie dbają o obliczanie rozmiarów łańcuchów (np. wielkość liter łańcuchowych jest określana w czasie kompilacji), reserve() w razie potrzeby, a następnie łączy wszystko.

Tutaj jest, mam nadzieję, że jest to przydatne:

namespace detail {

  template<typename>
  struct string_size_impl;

  template<size_t N>
  struct string_size_impl<const char[N]> {
    static constexpr size_t size(const char (&) [N]) { return N - 1; }
  };

  template<size_t N>
  struct string_size_impl<char[N]> {
    static size_t size(char (&s) [N]) { return N ? strlen(s) : 0; }
  };

  template<>
  struct string_size_impl<const char*> {
    static size_t size(const char* s) { return s ? strlen(s) : 0; }
  };

  template<>
  struct string_size_impl<char*> {
    static size_t size(char* s) { return s ? strlen(s) : 0; }
  };

  template<>
  struct string_size_impl<std::string> {
    static size_t size(const std::string& s) { return s.size(); }
  };

  template<typename String> size_t string_size(String&& s) {
    using noref_t = typename std::remove_reference<String>::type;
    using string_t = typename std::conditional<std::is_array<noref_t>::value,
                                              noref_t,
                                              typename std::remove_cv<noref_t>::type
                                              >::type;
    return string_size_impl<string_t>::size(s);
  }

  template<typename...>
  struct concatenate_impl;

  template<typename String>
  struct concatenate_impl<String> {
    static size_t size(String&& s) { return string_size(s); }
    static void concatenate(std::string& result, String&& s) { result += s; }
  };

  template<typename String, typename... Rest>
  struct concatenate_impl<String, Rest...> {
    static size_t size(String&& s, Rest&&... rest) {
      return string_size(s)
           + concatenate_impl<Rest...>::size(std::forward<Rest>(rest)...);
    }
    static void concatenate(std::string& result, String&& s, Rest&&... rest) {
      result += s;
      concatenate_impl<Rest...>::concatenate(result, std::forward<Rest>(rest)...);
    }
  };

} // namespace detail

template<typename... Strings>
std::string concatenate(Strings&&... strings) {
  std::string result;
  result.reserve(detail::concatenate_impl<Strings...>::size(std::forward<Strings>(strings)...));
  detail::concatenate_impl<Strings...>::concatenate(result, std::forward<Strings>(strings)...);
  return result;
}

Jedyną ciekawą częścią, jeśli chodzi o publiczny interfejs, jest ostatni template<typename... Strings> std::string concatenate(Strings&&... strings) szablon. Użycie jest proste:

int main() {
  const string space = " ";
  std::string result = concatenate("hello", space, "world");
  std::cout << result << std::endl;
}

Przy włączonej optymalizacji każdy porządny kompilator powinien być w stanie rozwinąć concatenate wywołanie tego samego kodu, co mój pierwszy przykład, w którym ręcznie napisałem wszystko. Jeśli chodzi o GCC 4.7 i 4.8, wygenerowany kod jest prawie identyczny jak wydajność.

 29
Author: syam,
Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/agent_stack/data/www/doraprojects.net/template/agent.layouts/content.php on line 54
2013-09-19 16:30:45

Najgorszy możliwy scenariusz to użycie zwykłego starego strcat (lub sprintf), ponieważ strcat przyjmuje ciąg C, który musi być "policzony", aby znaleźć koniec. Jak na długie struny, to jest to prawdziwy performance. Ciągi w stylu C++ są znacznie lepsze, a problemy z wydajnością prawdopodobnie będą związane z alokacją pamięci, a nie z liczeniem długości. Ale z drugiej strony, ciąg rośnie geometrycznie (podwaja się za każdym razem, gdy musi rosnąć), więc nie jest to takie straszne.

Bardzo bym podejrzewał, że wszystkie powyższe metody kończą się tą samą, a przynajmniej bardzo podobną wydajnością. Jeśli już, spodziewałbym się, że stringstream jest wolniejszy, ze względu na narzut w formatowaniu wspierającym - ale podejrzewam też, że jest marginalny.

Ponieważ tego typu rzeczy są "zabawne", wrócę z benchmarkiem...

Edit:

Zauważ, że te wyniki odnoszą się do mojego komputera z systemem x86-64 Linux, skompilowanego z g++ 4.6.3. Inne systemy operacyjne, kompilatory i implementacje bibliotek runtime C++ mogą / align = "left" / Jeśli wydajność jest ważna dla Twojej aplikacji, porównuj systemy, które są dla Ciebie krytyczne, używając używanych kompilatorów.

Oto kod, który napisałem, aby to przetestować. Może nie jest to idealne odwzorowanie prawdziwego scenariusza, ale myślę, że jest to scenariusz reprezentatywny:

#include <iostream>
#include <iomanip>
#include <string>
#include <sstream>
#include <cstring>

using namespace std;

static __inline__ unsigned long long rdtsc(void)
{
    unsigned hi, lo;
    __asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));
    return ( (unsigned long long)lo)|( ((unsigned long long)hi)<<32 );
}

string build_string_1(const string &a, const string &b, const string &c)
{
    string out = a + b + c;
    return out;
}

string build_string_1a(const string &a, const string &b, const string &c)
{
    string out;
    out.resize(a.length()*3);
    out = a + b + c;
    return out;
}

string build_string_2(const string &a, const string &b, const string &c)
{
    string out = a;
    out += b;
    out += c;
    return out;
}

string build_string_3(const string &a, const string &b, const string &c)
{
    string out;
    out = a;
    out.append(b);
    out.append(c);
    return out;
}


string build_string_4(const string &a, const string &b, const string &c)
{
    stringstream ss;

    ss << a << b << c;
    return ss.str();
}


char *build_string_5(const char *a, const char *b, const char *c)
{
    char* out = new char[strlen(a) * 3+1];
    strcpy(out, a);
    strcat(out, b);
    strcat(out, c);
    return out;
}



template<typename T>
size_t len(T s)
{
    return s.length();
}

template<>
size_t len(char *s)
{
    return strlen(s);
}

template<>
size_t len(const char *s)
{
    return strlen(s);
}



void result(const char *name, unsigned long long t, const string& out)
{
    cout << left << setw(22) << name << " time:" << right << setw(10) <<  t;
    cout << "   (per character: " 
         << fixed << right << setw(8) << setprecision(2) << (double)t / len(out) << ")" << endl;
}

template<typename T>
void benchmark(const char name[], T (Func)(const T& a, const T& b, const T& c), const char *strings[])
{
    unsigned long long t;

    const T s1 = strings[0];
    const T s2 = strings[1];
    const T s3 = strings[2];
    t = rdtsc();
    T out = Func(s1, s2, s3);
    t = rdtsc() - t; 

    if (len(out) != len(s1) + len(s2) + len(s3))
    {
        cout << "Error: out is different length from inputs" << endl;
        cout << "Got `" << out << "` from `" << s1 << "` + `" << s2 << "` + `" << s3 << "`";
    }
    result(name, t, out);
}


void benchmark(const char name[], char* (Func)(const char* a, const char* b, const char* c), 
               const char *strings[])
{
    unsigned long long t;

    const char* s1 = strings[0];
    const char* s2 = strings[1];
    const char* s3 = strings[2];
    t = rdtsc();
    char *out = Func(s1, s2, s3);
    t = rdtsc() - t; 

    if (len(out) != len(s1) + len(s2) + len(s3))
    {
        cout << "Error: out is different length from inputs" << endl;
        cout << "Got `" << out << "` from `" << s1 << "` + `" << s2 << "` + `" << s3 << "`";
    }
    result(name, t, out);
    delete [] out;
}


#define BM(func, size) benchmark(#func " " #size, func, strings ## _ ## size)


#define BM_LOT(size) BM(build_string_1, size); \
    BM(build_string_1a, size); \
    BM(build_string_2, size); \
    BM(build_string_3, size); \
    BM(build_string_4, size); \
    BM(build_string_5, size);

int main()
{
    const char *strings_small[]  = { "Abc", "Def", "Ghi" };
    const char *strings_medium[] = { "abcdefghijklmnopqrstuvwxyz", 
                                     "defghijklmnopqrstuvwxyzabc", 
                                     "ghijklmnopqrstuvwxyzabcdef" };
    const char *strings_large[]   = 
        { "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"
          "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"
          "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"
          "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"
          "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"
          "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"
          "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"
          "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"
          "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"
          "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz", 

          "defghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabc" 
          "defghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabc" 
          "defghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabc" 
          "defghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabc" 
          "defghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabc"

          "defghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabc" 
          "defghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabc" 
          "defghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabc" 
          "defghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabc" 
          "defghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabc", 

          "ghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdef"
          "ghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdef"
          "ghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdef"
          "ghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdef"
          "ghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdef"
          "ghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdef"
          "ghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdef"
          "ghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdef"
          "ghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdef"
          "ghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdef"
        };

    for(int i = 0; i < 5; i++)
    {
        BM_LOT(small);
        BM_LOT(medium);
        BM_LOT(large);
        cout << "---------------------------------------------" << endl;
    }
}

Oto kilka reprezentatywnych wyników:

build_string_1 small   time:      4075   (per character:   452.78)
build_string_1a small  time:      5384   (per character:   598.22)
build_string_2 small   time:      2669   (per character:   296.56)
build_string_3 small   time:      2427   (per character:   269.67)
build_string_4 small   time:     19380   (per character:  2153.33)
build_string_5 small   time:      6299   (per character:   699.89)
build_string_1 medium  time:      3983   (per character:    51.06)
build_string_1a medium time:      6970   (per character:    89.36)
build_string_2 medium  time:      4072   (per character:    52.21)
build_string_3 medium  time:      4000   (per character:    51.28)
build_string_4 medium  time:     19614   (per character:   251.46)
build_string_5 medium  time:      6304   (per character:    80.82)
build_string_1 large   time:      8491   (per character:     3.63)
build_string_1a large  time:      9563   (per character:     4.09)
build_string_2 large   time:      6154   (per character:     2.63)
build_string_3 large   time:      5992   (per character:     2.56)
build_string_4 large   time:     32450   (per character:    13.87)
build_string_5 large   time:     15768   (per character:     6.74)

Ten sam kod, uruchamiany jako 32-bit:

build_string_1 small   time:      4289   (per character:   476.56)
build_string_1a small  time:      5967   (per character:   663.00)
build_string_2 small   time:      3329   (per character:   369.89)
build_string_3 small   time:      3047   (per character:   338.56)
build_string_4 small   time:     22018   (per character:  2446.44)
build_string_5 small   time:      3026   (per character:   336.22)
build_string_1 medium  time:      4089   (per character:    52.42)
build_string_1a medium time:      8075   (per character:   103.53)
build_string_2 medium  time:      4569   (per character:    58.58)
build_string_3 medium  time:      4326   (per character:    55.46)
build_string_4 medium  time:     22751   (per character:   291.68)
build_string_5 medium  time:      2252   (per character:    28.87)
build_string_1 large   time:      8695   (per character:     3.72)
build_string_1a large  time:     12818   (per character:     5.48)
build_string_2 large   time:      8202   (per character:     3.51)
build_string_3 large   time:      8351   (per character:     3.57)
build_string_4 large   time:     38250   (per character:    16.35)
build_string_5 large   time:      8143   (per character:     3.48)

Z tego możemy wywnioskować:

  1. The best opcja jest dodawanie bitów na raz (out.append() lub out +=), z podejściem" przykutym " w miarę blisko.

  2. Wstępne przydzielanie ciągu znaków nie jest pomocne.

  3. Używanie stringstream jest dość słabym pomysłem (między 2-4x wolniejszym).

  4. char * używa new char[]. Użycie zmiennej lokalnej w funkcji wywołującej powoduje, że jest ona najszybsza - ale nieco niesprawiedliwie to porównywać.

  5. W łączeniu krótkich sznurków jest sporo napowietrznych-wystarczy kopiowanie danych powinno odbywać się co najwyżej po jednym cyklu na bajt [chyba że dane nie mieszczą się w pamięci podręcznej].

Edit2

Dodany, zgodnie z komentarzami:

string build_string_1b(const string &a, const string &b, const string &c)
{
    return a + b + c;
}

I

string build_string_2a(const string &a, const string &b, const string &c)
{
    string out;
    out.reserve(a.length() * 3);
    out += a;
    out += b;
    out += c;
    return out;
}

Co daje te wyniki:

build_string_1 small   time:      3845   (per character:   427.22)
build_string_1b small  time:      3165   (per character:   351.67)
build_string_2 small   time:      3176   (per character:   352.89)
build_string_2a small  time:      1904   (per character:   211.56)

build_string_1 large   time:      9056   (per character:     3.87)
build_string_1b large  time:      6414   (per character:     2.74)
build_string_2 large   time:      6417   (per character:     2.74)
build_string_2a large  time:      4179   (per character:     1.79)

(32-bitowy bieg, ale 64-bitowy pokazuje bardzo podobne wyniki na nich).

 16
Author: Mats Petersson,
Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/agent_stack/data/www/doraprojects.net/template/agent.layouts/content.php on line 54
2013-09-19 16:03:49

Podobnie jak w przypadku większości mikro-optymalizacji, będziesz musiał zmierzyć efekt każdej opcji, po uprzednim ustaleniu poprzez pomiar, że jest to rzeczywiście szyjka butelki warta optymalizacji. Nie ma ostatecznej odpowiedzi.

append i += powinien zrobić dokładnie to samo.

+ jest koncepcyjnie mniej wydajny, ponieważ tworzysz i niszczysz tymczasowe. Kompilator może, ale nie może, zoptymalizować to tak szybko, jak dodawanie.

Wywołanie reserve z Całkowity rozmiar może zmniejszyć liczbę potrzebnych alokacji pamięci - będą one prawdopodobnie największym wąskim gardłem.

<< (prawdopodobnie na stringstream) może być szybszy, ale nie musi być szybszy; musisz to zmierzyć. Jest to przydatne, jeśli trzeba formatować typy non-string, ale prawdopodobnie nie będzie szczególnie lepiej lub gorzej w radzeniu sobie z ciągami.

CString ma tę wadę, że nie jest przenośny i że haker uniksowy, taki jak ja, nie może powiedzieć, jakie mogą być jego zalety, a jakie nie.

 8
Author: Mike Seymour,
Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/agent_stack/data/www/doraprojects.net/template/agent.layouts/content.php on line 54
2015-03-19 19:47:08

Postanowiłem przeprowadzić test z kodem dostarczonym przez użytkownika Jesse Good , nieco zmodyfikowanym, aby uwzględnić obserwację Rapptz , a konkretnie fakt, że strungstream był konstruowany w każdej pojedynczej iteracji pętli. Dlatego dodałem kilka przypadków, kilka z nich jest ostringstream wyczyszczone sekwencją " oss.str ( "" ); oss.Wyczyść()"

Oto kod

#include <iostream>
#include <string>
#include <chrono>
#include <sstream>
#include <functional>


template <typename F> void time_measurement(F f, const std::string& comment)
{
    typedef std::chrono::high_resolution_clock clock;
    typedef std::chrono::duration<float, std::milli> mil;
    std::string r;
    auto t0 = clock::now();
    f(r);
    auto t1 = clock::now();
    std::cout << "\n-------------------------" << comment << "-------------------\n" <<r << '\n';
    std::cout << mil(t1-t0).count() << "ms\n";
    std::cout << "---------------------------------------------------------------------------\n";

}

inline void clear(std::ostringstream& x)
{
    x.str("");
    x.clear();
}

void test()
{
    std:: cout << std::endl << "----------------String Comparison---------------- " << std::endl;
    const int n=100000;
    {
        auto f=[](std::string& l_czTempStr)
        {
            std::string s1="Test data1";
            for (int i = 0; i < n; ++i)
            {
                l_czTempStr = s1 + "Test data2" + "Test data3";
            }
        };
        time_measurement(f, "string, plain addition");
   }

   {
        auto f=[](std::string& l_czTempStr)
        {
            for (int i = 0; i < n; ++i)
            {
                l_czTempStr =  "Test data1";
                l_czTempStr += "Test data2";
                l_czTempStr += "Test data3";
            }
        };
        time_measurement(f, "string, incremental");
    }

    {
         auto f=[](std::string& l_czTempStr)
         {
            for (int i = 0; i < n; ++i)
            {
                l_czTempStr =  "Test data1";
                l_czTempStr.append("Test data2");
                l_czTempStr.append("Test data3");
            }
         };
         time_measurement(f, "string, append");
     }

    {
         auto f=[](std::string& l_czTempStr)
         {
            for (int i = 0; i < n; ++i)
            {
                std::ostringstream oss;
                oss << "Test data1";
                oss << "Test data2";
                oss << "Test data3";
                l_czTempStr = oss.str();
            }
         };
         time_measurement(f, "oss, creation in each loop, incremental");
     }

    {
         auto f=[](std::string& l_czTempStr)
         {
            std::ostringstream oss;
            for (int i = 0; i < n; ++i)
            {
                oss.str("");
                oss.clear();
                oss << "Test data1";
                oss << "Test data2";
                oss << "Test data3";
            }
            l_czTempStr = oss.str();
         };
         time_measurement(f, "oss, 1 creation, incremental");
     }

    {
         auto f=[](std::string& l_czTempStr)
         {
            std::ostringstream oss;
            for (int i = 0; i < n; ++i)
            {
                oss.str("");
                oss.clear();
                oss << "Test data1" << "Test data2" << "Test data3";
            }
            l_czTempStr = oss.str();
         };
         time_measurement(f, "oss, 1 creation, plain addition");
     }

    {
         auto f=[](std::string& l_czTempStr)
         {
            std::ostringstream oss;
            for (int i = 0; i < n; ++i)
            {
                clear(oss);
                oss << "Test data1" << "Test data2" << "Test data3";
            }
            l_czTempStr = oss.str();
         };
         time_measurement(f, "oss, 1 creation, clearing calling inline function, plain addition");
     }


    {
         auto f=[](std::string& l_czTempStr)
         {
            for (int i = 0; i < n; ++i)
            {
                std::string x;
                x =  "Test data1";
                x.append("Test data2");
                x.append("Test data3");
                l_czTempStr=x;
            }
         };
         time_measurement(f, "string, creation in each loop");
     }

}

Oto wyniki:

/*

g++ "qtcreator debug mode"
----------------String Comparison---------------- 

-------------------------string, plain addition-------------------
Test data1Test data2Test data3
11.8496ms
---------------------------------------------------------------------------

-------------------------string, incremental-------------------
Test data1Test data2Test data3
3.55597ms
---------------------------------------------------------------------------

-------------------------string, append-------------------
Test data1Test data2Test data3
3.53099ms
---------------------------------------------------------------------------

-------------------------oss, creation in each loop, incremental-------------------
Test data1Test data2Test data3
58.1577ms
---------------------------------------------------------------------------

-------------------------oss, 1 creation, incremental-------------------
Test data1Test data2Test data3
11.1069ms
---------------------------------------------------------------------------

-------------------------oss, 1 creation, plain addition-------------------
Test data1Test data2Test data3
10.9946ms
---------------------------------------------------------------------------

-------------------------oss, 1 creation, clearing calling inline function, plain addition-------------------
Test data1Test data2Test data3
10.9502ms
---------------------------------------------------------------------------

-------------------------string, creation in each loop-------------------
Test data1Test data2Test data3
9.97495ms
---------------------------------------------------------------------------


g++ "qtcreator release mode" (optimized)
----------------String Comparison----------------

-------------------------string, plain addition-------------------
Test data1Test data2Test data3
8.41622ms
---------------------------------------------------------------------------

-------------------------string, incremental-------------------
Test data1Test data2Test data3
2.55462ms
---------------------------------------------------------------------------

-------------------------string, append-------------------
Test data1Test data2Test data3
2.5154ms
---------------------------------------------------------------------------

-------------------------oss, creation in each loop, incremental-------------------
Test data1Test data2Test data3
54.3232ms
---------------------------------------------------------------------------

-------------------------oss, 1 creation, incremental-------------------
Test data1Test data2Test data3
8.71854ms
---------------------------------------------------------------------------

-------------------------oss, 1 creation, plain addition-------------------
Test data1Test data2Test data3
8.80526ms
---------------------------------------------------------------------------

-------------------------oss, 1 creation, clearing calling inline function, plain addition-------------------
Test data1Test data2Test data3
8.78186ms
---------------------------------------------------------------------------

-------------------------string, creation in each loop-------------------
Test data1Test data2Test data3
8.4034ms
---------------------------------------------------------------------------
*/

Teraz za pomocą std:: string jest jeszcze szybszy, a append jest nadal najszybszym sposobem łączenia, ale ostringstream nie jest już tak niewiarygodnie straszny, jak to było wcześniej.

 1
Author: DrHell,
Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/agent_stack/data/www/doraprojects.net/template/agent.layouts/content.php on line 54
2018-03-14 00:02:01

Istnieją pewne istotne parametry, które mają potencjalny wpływ na wybór "najbardziej zoptymalizowanego sposobu". Niektóre z nich to-rozmiar łańcucha/zawartości, liczba operacji, optymalizacja kompilatora, itp.

W większości przypadków, string::operator+= wydaje się działać najlepiej. Jednak czasami, na niektórych kompilatorach, obserwuje się również, że ostringstream::operator<< działa najlepiej [jak - MinGW g++ 3.2.3, 1.8 GHz Single processor Dell PC]. Gdy pojawia się kontekst kompilatora, to głównie optymalizacje w kompilatorze co miałoby wpływ. Należy również wspomnieć, że {[2] } są obiektami złożonymi w porównaniu z prostymi łańcuchami, a zatem dodaje się do napowietrznych.

Więcej informacji - dyskusja, artykuł .

 0
Author: parasrish,
Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/agent_stack/data/www/doraprojects.net/template/agent.layouts/content.php on line 54
2017-05-19 03:48:50