Fast 24-bit array - > 32-bit array conversion?

Szybkie Podsumowanie:

Mam tablicę 24-bitowych wartości. Jakieś sugestie, jak szybko rozszerzyć poszczególne 24-bitowe elementy tablicy na elementy 32-bitowe?

Szczegóły:

Przetwarzam przychodzące klatki wideo w czasie rzeczywistym za pomocą shaderów pikseli w DirectX 10. Przeszkodą jest to, że moje klatki pochodzą ze sprzętu przechwytywania z 24-bitowymi pikselami( albo jako obrazy YUV lub RGB), ale DX10 ma tekstury 32-bitowych pikseli. Więc, Ja muszę rozszerzyć wartości 24-bitowe do 32-bitów, zanim będę mógł załadować je do GPU.

Naprawdę nie obchodzi mnie, na co ustawiłem pozostałe 8 bitów, lub gdzie przychodzące 24-bitowe są w tej wartości 32-bitowej - mogę to wszystko naprawić w pixel shader. Ale muszę zrobić konwersję z 24-bitowego na 32-bitowy naprawdę szybko.

Nie jestem zbyt dobrze obeznany z operacjami SIMD SSE, ale z mojego pobieżnego spojrzenia nie wygląda na to, że mogę zrobić rozszerzenie za ich pomocą, biorąc pod uwagę moje odczyty i zapisy nie są tego samego rozmiaru. Jakieś sugestie? A może utknąłem sekwencyjnie masując ten zestaw danych?

Wydaje się to bardzo głupie - używam shaderów pikseli do równoległości, ale wcześniej muszę wykonać sekwencyjną operację na piksel. Muszę przegapić coś oczywistego...

Author: Clippy, 2010-06-04

4 answers

Poniższy kod powinien być dość szybki. Kopiuje 4 piksele w każdej iteracji, używając tylko 32-bitowych instrukcji odczytu/zapisu. Wskaźniki źródłowe i docelowe powinny być wyrównane do 32 bitów.

uint32_t *src = ...;
uint32_t *dst = ...;

for (int i=0; i<num_pixels; i+=4) {
    uint32_t sa = src[0];
    uint32_t sb = src[1];
    uint32_t sc = src[2];

    dst[i+0] = sa;
    dst[i+1] = (sa>>24) | (sb<<8);
    dst[i+2] = (sb>>16) | (sc<<16);
    dst[i+3] = sc>>8;

    src += 3;
}

Edit:

Oto sposób, aby to zrobić, używając instrukcji SSSE3 PSHUFB i PALIGNR. Kod jest napisany przy użyciu kompilatora intrinsics, ale nie powinno być trudno przetłumaczyć go na assembly w razie potrzeby. Kopiuje 16 pikseli w każdej iteracji. Wskaźniki źródła i miejsca przeznaczenia musi być wyrównane do 16 bajtów, inaczej będzie to błąd. Jeśli nie są wyrównane, możesz sprawić, że zadziała, zamieniając _mm_load_si128 na _mm_loadu_si128 i _mm_store_si128 na _mm_storeu_si128, ale będzie to wolniejsze.

#include <emmintrin.h>
#include <tmmintrin.h>

__m128i *src = ...;
__m128i *dst = ...;
__m128i mask = _mm_setr_epi8(0,1,2,-1, 3,4,5,-1, 6,7,8,-1, 9,10,11,-1);

for (int i=0; i<num_pixels; i+=16) {
    __m128i sa = _mm_load_si128(src);
    __m128i sb = _mm_load_si128(src+1);
    __m128i sc = _mm_load_si128(src+2);

    __m128i val = _mm_shuffle_epi8(sa, mask);
    _mm_store_si128(dst, val);
    val = _mm_shuffle_epi8(_mm_alignr_epi8(sb, sa, 12), mask);
    _mm_store_si128(dst+1, val);
    val = _mm_shuffle_epi8(_mm_alignr_epi8(sc, sb, 8), mask);
    _mm_store_si128(dst+2, val);
    val = _mm_shuffle_epi8(_mm_alignr_epi8(sc, sc, 4), mask);
    _mm_store_si128(dst+3, val);

    src += 3;
    dst += 4;
}

SSSE3 (nie mylić z SSE3) będzie wymagał stosunkowo nowego procesora: Core 2 lub nowszego, i wierzę, że AMD nie obsługuje go jeszcze. Wykonanie tego z instrukcjami SSE2 zajmie dużo więcej operacji i może nie być tego warte.

 21
Author: interjay,
Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/agent_stack/data/www/doraprojects.net/template/agent.layouts/content.php on line 54
2010-06-04 21:02:22

SSE3 jest zajebisty, ale dla tych, którzy nie mogą go używać z jakiegokolwiek powodu, oto konwersja w asemblerze x86, ręcznie zoptymalizowana przez was. Dla kompletności podaję konwersję w obu kierunkach: RGB32->RGB24 i RGB24 - > rgb32.

Zauważ, że kod C interjaya pozostawia kosz w MSB (kanale Alfa) pikseli docelowych. Może to nie ma znaczenia w niektórych aplikacjach, ale ma znaczenie w moich, stąd mój kod RGB24->rgb32 zmusza MSB do zera. Podobnie mój kod RGB32 - > RGB24 ignoruje MSB; pozwala to uniknąć śmieci, jeśli dane źródłowe mają niezerowy kanał alfa. Funkcje te nie kosztują prawie nic pod względem wydajności, co potwierdzają benchmarki.

Dla RGB32 - > RGB24 udało mi się pokonać VC++ optimizer o około 20%. Dla RGB24->rgb32 zysk był nieznaczny. Benchmarking został wykonany na i5 2500K. pominąłem kod benchmarking tutaj, ale jeśli ktoś chce to podam. Najważniejszą optymalizacją było wybranie wskaźnika źródłowego, gdy tylko możliwe (zobacz komentarz ASAP). Domyślam się, że Zwiększa to równoległość, pozwalając rurociągowi instrukcji prefetch wcześniej. Poza tym po prostu zmieniłem kolejność niektórych instrukcji, aby zmniejszyć zależności i nakładać dostęp do pamięci za pomocą bit-bashingu.

void ConvRGB32ToRGB24(const UINT *Src, UINT *Dst, UINT Pixels)
{
#if !USE_ASM
    for (UINT i = 0; i < Pixels; i += 4) {
        UINT    sa = Src[i + 0] & 0xffffff;
        UINT    sb = Src[i + 1] & 0xffffff;
        UINT    sc = Src[i + 2] & 0xffffff;
        UINT    sd = Src[i + 3];
        Dst[0] = sa | (sb << 24);
        Dst[1] = (sb >> 8) | (sc << 16);
        Dst[2] = (sc >> 16) | (sd << 8);
        Dst += 3;
    }
#else
    __asm {
        mov     ecx, Pixels
        shr     ecx, 2              // 4 pixels at once
        jz      ConvRGB32ToRGB24_$2
        mov     esi, Src
        mov     edi, Dst
ConvRGB32ToRGB24_$1:
        mov     ebx, [esi + 4]      // sb
        and     ebx, 0ffffffh       // sb & 0xffffff
        mov     eax, [esi + 0]      // sa
        and     eax, 0ffffffh       // sa & 0xffffff
        mov     edx, ebx            // copy sb
        shl     ebx, 24             // sb << 24
        or      eax, ebx            // sa | (sb << 24)
        mov     [edi + 0], eax      // Dst[0]
        shr     edx, 8              // sb >> 8
        mov     eax, [esi + 8]      // sc
        and     eax, 0ffffffh       // sc & 0xffffff
        mov     ebx, eax            // copy sc
        shl     eax, 16             // sc << 16
        or      eax, edx            // (sb >> 8) | (sc << 16)
        mov     [edi + 4], eax      // Dst[1]
        shr     ebx, 16             // sc >> 16
        mov     eax, [esi + 12]     // sd
        add     esi, 16             // Src += 4 (ASAP)
        shl     eax, 8              // sd << 8
        or      eax, ebx            // (sc >> 16) | (sd << 8)
        mov     [edi + 8], eax      // Dst[2]
        add     edi, 12             // Dst += 3
        dec     ecx
        jnz     SHORT ConvRGB32ToRGB24_$1
ConvRGB32ToRGB24_$2:
    }
#endif
}

void ConvRGB24ToRGB32(const UINT *Src, UINT *Dst, UINT Pixels)
{
#if !USE_ASM
    for (UINT i = 0; i < Pixels; i += 4) {
        UINT    sa = Src[0];
        UINT    sb = Src[1];
        UINT    sc = Src[2];
        Dst[i + 0] = sa & 0xffffff;
        Dst[i + 1] = ((sa >> 24) | (sb << 8)) & 0xffffff;
        Dst[i + 2] = ((sb >> 16) | (sc << 16)) & 0xffffff;
        Dst[i + 3] = sc >> 8;
        Src += 3;
    }
#else
    __asm {
        mov     ecx, Pixels
        shr     ecx, 2              // 4 pixels at once
        jz      SHORT ConvRGB24ToRGB32_$2
        mov     esi, Src
        mov     edi, Dst
        push    ebp
ConvRGB24ToRGB32_$1:
        mov     ebx, [esi + 4]      // sb
        mov     edx, ebx            // copy sb
        mov     eax, [esi + 0]      // sa
        mov     ebp, eax            // copy sa
        and     ebx, 0ffffh         // sb & 0xffff
        shl     ebx, 8              // (sb & 0xffff) << 8
        and     eax, 0ffffffh       // sa & 0xffffff
        mov     [edi + 0], eax      // Dst[0]
        shr     ebp, 24             // sa >> 24
        or      ebx, ebp            // (sa >> 24) | ((sb & 0xffff) << 8)
        mov     [edi + 4], ebx      // Dst[1]
        shr     edx, 16             // sb >> 16
        mov     eax, [esi + 8]      // sc
        add     esi, 12             // Src += 12 (ASAP)
        mov     ebx, eax            // copy sc
        and     eax, 0ffh           // sc & 0xff
        shl     eax, 16             // (sc & 0xff) << 16
        or      eax, edx            // (sb >> 16) | ((sc & 0xff) << 16)
        mov     [edi + 8], eax      // Dst[2]
        shr     ebx, 8              // sc >> 8
        mov     [edi + 12], ebx     // Dst[3]
        add     edi, 16             // Dst += 16
        dec     ecx
        jnz     SHORT ConvRGB24ToRGB32_$1
        pop     ebp
ConvRGB24ToRGB32_$2:
    }
#endif
}

A skoro już o tym mowa, oto te same konwersje w rzeczywistym zestawie SSE3. Działa to tylko wtedy, gdy masz asembler (FASM jest darmowy) i masz procesor obsługujący SSE3 (prawdopodobnie, ale lepiej sprawdzić). Zauważ, że intrinsics niekoniecznie generują coś tak wydajnego, to całkowicie zależy od narzędzi, których używasz i na jakiej platformie kompilujesz. Tutaj jest to proste: to, co widzisz, jest tym, co dostajesz. Ten kod generuje to samo wyjście co powyższy kod x86 i jest o 1.5 x szybszy (na i5 2500K).

format MS COFF

section '.text' code readable executable

public _ConvRGB32ToRGB24SSE3

;   ebp + 8     Src (*RGB32, 16-byte aligned)
;   ebp + 12    Dst (*RGB24, 16-byte aligned)
;   ebp + 16    Pixels

_ConvRGB32ToRGB24SSE3:
    push    ebp
    mov     ebp, esp
    mov     eax, [ebp + 8]
    mov     edx, [ebp + 12]
    mov     ecx, [ebp + 16]
    shr     ecx, 4
    jz      done1
    movupd  xmm7, [mask1]

top1:
    movupd  xmm0, [eax + 0]     ; sa = Src[0]
    pshufb  xmm0, xmm7          ; sa = _mm_shuffle_epi8(sa, mask)
    movupd  xmm1, [eax + 16]    ; sb = Src[1]
    pshufb  xmm1, xmm7          ; sb = _mm_shuffle_epi8(sb, mask)
    movupd  xmm2, xmm1          ; sb1 = sb
    pslldq  xmm1, 12            ; sb = _mm_slli_si128(sb, 12)
    por     xmm0, xmm1          ; sa = _mm_or_si128(sa, sb)
    movupd  [edx + 0], xmm0     ; Dst[0] = sa
    psrldq  xmm2, 4             ; sb1 = _mm_srli_si128(sb1, 4)
    movupd  xmm0, [eax + 32]    ; sc = Src[2]
    pshufb  xmm0, xmm7          ; sc = _mm_shuffle_epi8(sc, mask)
    movupd  xmm1, xmm0          ; sc1 = sc
    pslldq  xmm0, 8             ; sc = _mm_slli_si128(sc, 8)
    por     xmm0, xmm2          ; sc = _mm_or_si128(sb1, sc)
    movupd  [edx + 16], xmm0    ; Dst[1] = sc
    psrldq  xmm1, 8             ; sc1 = _mm_srli_si128(sc1, 8)
    movupd  xmm0, [eax + 48]    ; sd = Src[3]
    pshufb  xmm0, xmm7          ; sd = _mm_shuffle_epi8(sd, mask)
    pslldq  xmm0, 4             ; sd = _mm_slli_si128(sd, 4)
    por     xmm0, xmm1          ; sd = _mm_or_si128(sc1, sd)
    movupd  [edx + 32], xmm0    ; Dst[2] = sd
    add     eax, 64
    add     edx, 48
    dec     ecx
    jnz     top1

done1:
    pop     ebp
    ret

public _ConvRGB24ToRGB32SSE3

;   ebp + 8     Src (*RGB24, 16-byte aligned)
;   ebp + 12    Dst (*RGB32, 16-byte aligned)
;   ebp + 16    Pixels

_ConvRGB24ToRGB32SSE3:
    push    ebp
    mov     ebp, esp
    mov     eax, [ebp + 8]
    mov     edx, [ebp + 12]
    mov     ecx, [ebp + 16]
    shr     ecx, 4
    jz      done2
    movupd  xmm7, [mask2]

top2:
    movupd  xmm0, [eax + 0]     ; sa = Src[0]
    movupd  xmm1, [eax + 16]    ; sb = Src[1]
    movupd  xmm2, [eax + 32]    ; sc = Src[2]
    movupd  xmm3, xmm0          ; sa1 = sa
    pshufb  xmm0, xmm7          ; sa = _mm_shuffle_epi8(sa, mask)
    movupd  [edx], xmm0         ; Dst[0] = sa
    movupd  xmm4, xmm1          ; sb1 = sb
    palignr xmm1, xmm3, 12      ; sb = _mm_alignr_epi8(sb, sa1, 12)
    pshufb  xmm1, xmm7          ; sb = _mm_shuffle_epi8(sb, mask);
    movupd  [edx + 16], xmm1    ; Dst[1] = sb
    movupd  xmm3, xmm2          ; sc1 = sc
    palignr xmm2, xmm4, 8       ; sc = _mm_alignr_epi8(sc, sb1, 8)
    pshufb  xmm2, xmm7          ; sc = _mm_shuffle_epi8(sc, mask)
    movupd  [edx + 32], xmm2    ; Dst[2] = sc
    palignr xmm3, xmm3, 4       ; sc1 = _mm_alignr_epi8(sc1, sc1, 4)
    pshufb  xmm3, xmm7          ; sc1 = _mm_shuffle_epi8(sc1, mask)
    movupd  [edx + 48], xmm3    ; Dst[3] = sc1
    add     eax, 48
    add     edx, 64
    dec     ecx
    jnz     top2

done2:
    pop     ebp
    ret

section '.data' data readable writeable align 16

label mask1 dqword 
    db  0,1,2,4, 5,6,8,9, 10,12,13,14, -1,-1,-1,-1
label mask2 dqword 
    db  0,1,2,-1, 3,4,5,-1, 6,7,8,-1, 9,10,11,-1
 5
Author: Chris Korda,
Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/agent_stack/data/www/doraprojects.net/template/agent.layouts/content.php on line 54
2012-04-05 09:51:06

Różne rozmiary wejść/wyjść nie są przeszkodą w korzystaniu z simd, tylko ograniczeniem prędkości. Trzeba by skrawać dane tak, aby odczytywać i zapisywać pełne słowa simd (16 bajtów).

W tym przypadku należy odczytać 3 słowa SIMD( 48 bajtów = = 16 pikseli rgb), wykonać rozszerzenie, a następnie zapisać 4 słowa SIMD.

Mówię tylko, że ty możesz używać SIMD, nie mówię, że ty powinieneś . Środkowy bit, ekspansja, jest nadal trudne, ponieważ masz nierównomierne rozmiary przesunięć w różne części słowa.

 1
Author: Mark Borgerding,
Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/agent_stack/data/www/doraprojects.net/template/agent.layouts/content.php on line 54
2010-06-04 13:06:13

SSE 4.1 .ASM:

PINSRD  XMM0,  DWORD PTR[ESI],   0
PINSRD  XMM0,  DWORD PTR[ESI+3], 1
PINSRD  XMM0,  DWORD PTR[ESI+6], 2
PINSRD  XMM0,  DWORD PTR[ESI+9], 3
PSLLD   XMM0,  8                    
PSRLD   XMM0,  8
MOVNTDQ [EDI], XMM1
add     ESI,   12
add     EDI,   16
 -1
Author: Henry,
Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/agent_stack/data/www/doraprojects.net/template/agent.layouts/content.php on line 54
2012-10-20 02:47:28