Tło wątku z QThread w PyQt

Mam program, który łączy się z radiem, którego używam poprzez gui, które napisałem w PyQt. Oczywiście jedną z głównych funkcji radia jest przesyłanie danych, ale aby to robić w sposób ciągły, muszę zapętlić zapisy, co powoduje zawieszenie gui. Ponieważ nigdy nie miałem do czynienia z threadingiem, próbowałem pozbyć się tych zawieszeń za pomocą QCoreApplication.processEvents(). radio musi spać między transmisjami, więc gui nadal wisi na podstawie tego, jak długo te śpi.

Czy jest prosty sposób na naprawienie to za pomocą QThread? Szukałem samouczków, jak zaimplementować wielowątkowość za pomocą PyQt, ale większość z nich zajmuje się konfigurowaniem serwerów i jest znacznie bardziej zaawansowana niż ich potrzebuję. Szczerze mówiąc, nawet nie potrzebuję mojego wątku, aby zaktualizować cokolwiek, gdy jest uruchomiony, po prostu muszę go uruchomić, przekazać go w tle i zatrzymać.

Author: Gary Hughes, 2011-07-22

6 answers

Stworzyłem mały przykład, który pokazuje 3 różne i proste sposoby radzenia sobie z wątkami. Mam nadzieję, że pomoże Ci to znaleźć właściwe podejście do twojego problemu.

import sys
import time

from PyQt5.QtCore import (QCoreApplication, QObject, QRunnable, QThread,
                          QThreadPool, pyqtSignal)


# Subclassing QThread
# http://qt-project.org/doc/latest/qthread.html
class AThread(QThread):

    def run(self):
        count = 0
        while count < 5:
            time.sleep(1)
            print("A Increasing")
            count += 1

# Subclassing QObject and using moveToThread
# http://blog.qt.digia.com/blog/2007/07/05/qthreads-no-longer-abstract
class SomeObject(QObject):

    finished = pyqtSignal()

    def long_running(self):
        count = 0
        while count < 5:
            time.sleep(1)
            print("B Increasing")
            count += 1
        self.finished.emit()

# Using a QRunnable
# http://qt-project.org/doc/latest/qthreadpool.html
# Note that a QRunnable isn't a subclass of QObject and therefore does
# not provide signals and slots.
class Runnable(QRunnable):

    def run(self):
        count = 0
        app = QCoreApplication.instance()
        while count < 5:
            print("C Increasing")
            time.sleep(1)
            count += 1
        app.quit()


def using_q_thread():
    app = QCoreApplication([])
    thread = AThread()
    thread.finished.connect(app.exit)
    thread.start()
    sys.exit(app.exec_())

def using_move_to_thread():
    app = QCoreApplication([])
    objThread = QThread()
    obj = SomeObject()
    obj.moveToThread(objThread)
    obj.finished.connect(objThread.quit)
    objThread.started.connect(obj.long_running)
    objThread.finished.connect(app.exit)
    objThread.start()
    sys.exit(app.exec_())

def using_q_runnable():
    app = QCoreApplication([])
    runnable = Runnable()
    QThreadPool.globalInstance().start(runnable)
    sys.exit(app.exec_())

if __name__ == "__main__":
    #using_q_thread()
    #using_move_to_thread()
    using_q_runnable()
 107
Author: aukaost,
Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/agent_stack/data/www/doraprojects.net/template/agent.layouts/content.php on line 54
2016-09-18 08:30:42

Bardzo ładny przykład z Matta, poprawiłem literówkę, a także pyqt4. 8 jest teraz powszechne, więc usunąłem klasę dummy i dodałem przykład dla sygnału dataReady

# -*- coding: utf-8 -*-
import sys
from PyQt4 import QtCore, QtGui
from PyQt4.QtCore import Qt


# very testable class (hint: you can use mock.Mock for the signals)
class Worker(QtCore.QObject):
    finished = QtCore.pyqtSignal()
    dataReady = QtCore.pyqtSignal(list, dict)

    @QtCore.pyqtSlot()
    def processA(self):
        print "Worker.processA()"
        self.finished.emit()

    @QtCore.pyqtSlot(str, list, list)
    def processB(self, foo, bar=None, baz=None):
        print "Worker.processB()"
        for thing in bar:
            # lots of processing...
            self.dataReady.emit(['dummy', 'data'], {'dummy': ['data']})
        self.finished.emit()


def onDataReady(aList, aDict):
    print 'onDataReady'
    print repr(aList)
    print repr(aDict)


app = QtGui.QApplication(sys.argv)

thread = QtCore.QThread()  # no parent!
obj = Worker()  # no parent!
obj.dataReady.connect(onDataReady)

obj.moveToThread(thread)

# if you want the thread to stop after the worker is done
# you can always call thread.start() again later
obj.finished.connect(thread.quit)

# one way to do it is to start processing as soon as the thread starts
# this is okay in some cases... but makes it harder to send data to
# the worker object from the main gui thread.  As you can see I'm calling
# processA() which takes no arguments
thread.started.connect(obj.processA)
thread.finished.connect(app.exit)

thread.start()

# another way to do it, which is a bit fancier, allows you to talk back and
# forth with the object in a thread safe way by communicating through signals
# and slots (now that the thread is running I can start calling methods on
# the worker object)
QtCore.QMetaObject.invokeMethod(obj, 'processB', Qt.QueuedConnection,
                                QtCore.Q_ARG(str, "Hello World!"),
                                QtCore.Q_ARG(list, ["args", 0, 1]),
                                QtCore.Q_ARG(list, []))

# that looks a bit scary, but its a totally ok thing to do in Qt,
# we're simply using the system that Signals and Slots are built on top of,
# the QMetaObject, to make it act like we safely emitted a signal for
# the worker thread to pick up when its event loop resumes (so if its doing
# a bunch of work you can call this method 10 times and it will just queue
# up the calls.  Note: PyQt > 4.6 will not allow you to pass in a None
# instead of an empty list, it has stricter type checking

app.exec_()
 35
Author: user178047,
Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/agent_stack/data/www/doraprojects.net/template/agent.layouts/content.php on line 54
2014-02-27 05:50:45

Weź tę odpowiedź zaktualizowaną dla PyQt5, python 3.4

Użyj tego jako wzorca, aby uruchomić pracownika, który nie pobiera danych i zwraca dane, które są dostępne w formularzu.

1-klasa robotnicza jest mniejsza i umieszczana we własnym pliku worker.py do łatwego zapamiętywania i niezależnego ponownego wykorzystania oprogramowania.

2-The main.py plik jest plikiem, który definiuje klasę postaci GUI

3 - obiekt wątku nie jest podklasowany.

4-ZARÓWNO obiekt wątku, jak i obiekt worker należy do obiektu formularza

5-etapy procedury znajdują się w komentarzach.

    # worker.py
from PyQt5.QtCore import QThread, QObject, pyqtSignal, pyqtSlot
import time


class Worker(QObject):
    finished = pyqtSignal()
    intReady = pyqtSignal(int)


    @pyqtSlot()
    def procCounter(self): # A slot takes no params
        for i in range(1, 100):
            time.sleep(1)
            self.intReady.emit(i)

        self.finished.emit()

A plik główny to:

  #main.py
  from PyQt5.QtCore import QThread
  from PyQt5.QtWidgets import QApplication, QLabel, QWidget, QGridLayout
  import sys
  import worker


  class Form(QWidget):

    def __init__(self):
       super().__init__()
       self.label = QLabel("0")

       # 1 - create Worker and Thread inside the Form
       self.obj = worker.Worker()  # no parent!
       self.thread = QThread()  # no parent!

       # 2 - Connect Worker`s Signals to Form method slots to post data.
       self.obj.intReady.connect(self.onIntReady)

       # 3 - Move the Worker object to the Thread object
       self.obj.moveToThread(self.thread)

       # 4 - Connect Worker Signals to the Thread slots
       self.obj.finished.connect(self.thread.quit)

       # 5 - Connect Thread started signal to Worker operational slot method
       self.thread.started.connect(self.obj.procCounter)

       # * - Thread finished signal will close the app if you want!
       #self.thread.finished.connect(app.exit)

       # 6 - Start the thread
       self.thread.start()

       # 7 - Start the form
       self.initUI()


    def initUI(self):
        grid = QGridLayout()
        self.setLayout(grid)
        grid.addWidget(self.label,0,0)

        self.move(300, 150)
        self.setWindowTitle('thread test')
        self.show()

    def onIntReady(self, i):
        self.label.setText("{}".format(i))
        #print(i)

    app = QApplication(sys.argv)

    form = Form()

    sys.exit(app.exec_())
 30
Author: Raiden Core,
Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/agent_stack/data/www/doraprojects.net/template/agent.layouts/content.php on line 54
2015-10-31 15:19:33

Według programistów Qt, podklasowanie QThread jest nieprawidłowe (zobacz http://blog.qt.digia.com/blog/2010/06/17/youre-doing-it-wrong/). ale ten artykuł jest naprawdę trudny do zrozumienia (plus tytuł jest trochę protekcjonalny). Znalazłem lepszy post na blogu, który zawiera bardziej szczegółowe wyjaśnienie, dlaczego powinieneś używać jednego stylu wątku nad innym: http://mayaposch.wordpress.com/2011/11/01/how-to-really-truly-use-qthreads-the-full-explanation/{[3]

In my opinia, prawdopodobnie nigdy nie powinieneś podklasować wątku z zamiarem przeciążenia metody run. Podczas gdy to działa, w zasadzie omijasz sposób, w jaki Qt chce, abyś pracował. Plus będziesz przegapić rzeczy, takie jak wydarzenia i odpowiednie sygnały bezpieczne wątku i szczeliny. Plus, jak prawdopodobnie zobaczysz w powyższym poście na blogu, "poprawny" sposób gwintowania zmusza cię do napisania bardziej testowalnego kodu.

Oto kilka przykładów wykorzystania QThreads w PyQt (zamieściłem osobną odpowiedź poniżej poprawnie używa QRunnable i zawiera sygnały / sloty, że odpowiedź jest lepsza, jeśli masz wiele zadań asynchronicznych, które trzeba załadować balans).

import sys
from PyQt4 import QtCore
from PyQt4 import QtGui
from PyQt4.QtCore import Qt

# very testable class (hint: you can use mock.Mock for the signals)
class Worker(QtCore.QObject):
    finished = QtCore.pyqtSignal()
    dataReady = QtCore.pyqtSignal(list, dict)

    @QtCore.pyqtSlot()
    def processA(self):
        print "Worker.processA()"
        self.finished.emit()

    @QtCore.pyqtSlot(str, list, list)
    def processB(self, foo, bar=None, baz=None):
        print "Worker.processB()"
        for thing in bar:
            # lots of processing...
            self.dataReady.emit(['dummy', 'data'], {'dummy': ['data']})
        self.finished.emit()


class Thread(QtCore.QThread):
    """Need for PyQt4 <= 4.6 only"""
    def __init__(self, parent=None):
        QtCore.QThread.__init__(self, parent)

     # this class is solely needed for these two methods, there
     # appears to be a bug in PyQt 4.6 that requires you to
     # explicitly call run and start from the subclass in order
     # to get the thread to actually start an event loop

    def start(self):
        QtCore.QThread.start(self)

    def run(self):
        QtCore.QThread.run(self)


app = QtGui.QApplication(sys.argv)

thread = Thread() # no parent!
obj = Worker() # no parent!
obj.moveToThread(thread)

# if you want the thread to stop after the worker is done
# you can always call thread.start() again later
obj.finished.connect(thread.quit)

# one way to do it is to start processing as soon as the thread starts
# this is okay in some cases... but makes it harder to send data to
# the worker object from the main gui thread.  As you can see I'm calling
# processA() which takes no arguments
thread.started.connect(obj.processA)
thread.start()

# another way to do it, which is a bit fancier, allows you to talk back and
# forth with the object in a thread safe way by communicating through signals
# and slots (now that the thread is running I can start calling methods on
# the worker object)
QtCore.QMetaObject.invokeMethod(obj, 'processB', Qt.QueuedConnection,
                                QtCore.Q_ARG(str, "Hello World!"),
                                QtCore.Q_ARG(list, ["args", 0, 1]),
                                QtCore.Q_ARG(list, []))

# that looks a bit scary, but its a totally ok thing to do in Qt,
# we're simply using the system that Signals and Slots are built on top of,
# the QMetaObject, to make it act like we safely emitted a signal for 
# the worker thread to pick up when its event loop resumes (so if its doing
# a bunch of work you can call this method 10 times and it will just queue
# up the calls.  Note: PyQt > 4.6 will not allow you to pass in a None
# instead of an empty list, it has stricter type checking

app.exec_()

# Without this you may get weird QThread messages in the shell on exit
app.deleteLater()        
 27
Author: Matthew Levine,
Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/agent_stack/data/www/doraprojects.net/template/agent.layouts/content.php on line 54
2016-02-23 16:10:45

W PyQt istnieje wiele opcji uzyskania asynchronicznego zachowania. Dla rzeczy, które wymagają przetwarzania zdarzeń(np. QtNetwork, etc) powinieneś użyć przykładu QThread, który podałem w mojej innej odpowiedzi na ten wątek. Ale dla zdecydowanej większości Twoich potrzeb w zakresie gwintowania, myślę, że to rozwiązanie jest o wiele lepsze niż inne metody.

Zaletą tego jest to, że QThreadPool ustawia Twoje wystąpienia QRunnable jako zadania. Jest to podobne do wzorca zadań zastosowanego w TBB firmy Intel. On nie jest tak elegancki, jak lubię, ale ma doskonałe zachowanie asynchroniczne.

Pozwala to wykorzystać większość mocy wątków Qt w Pythonie poprzez QRunnable i nadal korzystać z sygnałów i slotów. Używam tego samego kodu w kilku aplikacjach, niektóre wykonują setki asynchronicznych wywołań REST, niektóre otwierają pliki lub katalogi list, a najlepsze jest użycie tej metody, zadanie Qt równoważy zasoby systemowe dla mnie.

import time
from PyQt4 import QtCore
from PyQt4 import QtGui
from PyQt4.QtCore import Qt


def async(method, args, uid, readycb, errorcb=None):
    """
    Asynchronously runs a task

    :param func method: the method to run in a thread
    :param object uid: a unique identifier for this task (used for verification)
    :param slot updatecb: the callback when data is receieved cb(uid, data)
    :param slot errorcb: the callback when there is an error cb(uid, errmsg)

    The uid option is useful when the calling code makes multiple async calls
    and the callbacks need some context about what was sent to the async method.
    For example, if you use this method to thread a long running database call
    and the user decides they want to cancel it and start a different one, the
    first one may complete before you have a chance to cancel the task.  In that
    case, the "readycb" will be called with the cancelled task's data.  The uid
    can be used to differentiate those two calls (ie. using the sql query).

    :returns: Request instance
    """
    request = Request(method, args, uid, readycb, errorcb)
    QtCore.QThreadPool.globalInstance().start(request)
    return request


class Request(QtCore.QRunnable):
    """
    A Qt object that represents an asynchronous task

    :param func method: the method to call
    :param list args: list of arguments to pass to method
    :param object uid: a unique identifier (used for verification)
    :param slot readycb: the callback used when data is receieved
    :param slot errorcb: the callback used when there is an error

    The uid param is sent to your error and update callbacks as the
    first argument. It's there to verify the data you're returning

    After created it should be used by invoking:

    .. code-block:: python

       task = Request(...)
       QtCore.QThreadPool.globalInstance().start(task)

    """
    INSTANCES = []
    FINISHED = []
    def __init__(self, method, args, uid, readycb, errorcb=None):
        super(Request, self).__init__()
        self.setAutoDelete(True)
        self.cancelled = False

        self.method = method
        self.args = args
        self.uid = uid
        self.dataReady = readycb
        self.dataError = errorcb

        Request.INSTANCES.append(self)

        # release all of the finished tasks
        Request.FINISHED = []

    def run(self):
        """
        Method automatically called by Qt when the runnable is ready to run.
        This will run in a separate thread.
        """
        # this allows us to "cancel" queued tasks if needed, should be done
        # on shutdown to prevent the app from hanging
        if self.cancelled:
            self.cleanup()
            return

        # runs in a separate thread, for proper async signal/slot behavior
        # the object that emits the signals must be created in this thread.
        # Its not possible to run grabber.moveToThread(QThread.currentThread())
        # so to get this QObject to properly exhibit asynchronous
        # signal and slot behavior it needs to live in the thread that
        # we're running in, creating the object from within this thread
        # is an easy way to do that.
        grabber = Requester()
        grabber.Loaded.connect(self.dataReady, Qt.QueuedConnection)
        if self.dataError is not None:
            grabber.Error.connect(self.dataError, Qt.QueuedConnection)

        try:
            result = self.method(*self.args)
            if self.cancelled:
                # cleanup happens in 'finally' statement
                return
            grabber.Loaded.emit(self.uid, result)
        except Exception as error:
            if self.cancelled:
                # cleanup happens in 'finally' statement
                return
            grabber.Error.emit(self.uid, unicode(error))
        finally:
            # this will run even if one of the above return statements
            # is executed inside of the try/except statement see:
            # https://docs.python.org/2.7/tutorial/errors.html#defining-clean-up-actions
            self.cleanup(grabber)

    def cleanup(self, grabber=None):
        # remove references to any object or method for proper ref counting
        self.method = None
        self.args = None
        self.uid = None
        self.dataReady = None
        self.dataError = None

        if grabber is not None:
            grabber.deleteLater()

        # make sure this python obj gets cleaned up
        self.remove()

    def remove(self):
        try:
            Request.INSTANCES.remove(self)

            # when the next request is created, it will clean this one up
            # this will help us avoid this object being cleaned up
            # when it's still being used
            Request.FINISHED.append(self)
        except ValueError:
            # there might be a race condition on shutdown, when shutdown()
            # is called while the thread is still running and the instance
            # has already been removed from the list
            return

    @staticmethod
    def shutdown():
        for inst in Request.INSTANCES:
            inst.cancelled = True
        Request.INSTANCES = []
        Request.FINISHED = []


class Requester(QtCore.QObject):
    """
    A simple object designed to be used in a separate thread to allow
    for asynchronous data fetching
    """

    #
    # Signals
    #

    Error = QtCore.pyqtSignal(object, unicode)
    """
    Emitted if the fetch fails for any reason

    :param unicode uid: an id to identify this request
    :param unicode error: the error message
    """

    Loaded = QtCore.pyqtSignal(object, object)
    """
    Emitted whenever data comes back successfully

    :param unicode uid: an id to identify this request
    :param list data: the json list returned from the GET
    """

    NetworkConnectionError = QtCore.pyqtSignal(unicode)
    """
    Emitted when the task fails due to a network connection error

    :param unicode message: network connection error message
    """

    def __init__(self, parent=None):
        super(Requester, self).__init__(parent)


class ExampleObject(QtCore.QObject):
    def __init__(self, parent=None):
        super(ExampleObject, self).__init__(parent)
        self.uid = 0
        self.request = None

    def ready_callback(self, uid, result):
        if uid != self.uid:
            return
        print "Data ready from %s: %s" % (uid, result)

    def error_callback(self, uid, error):
        if uid != self.uid:
            return
        print "Data error from %s: %s" % (uid, error)

    def fetch(self):
        if self.request is not None:
            # cancel any pending requests
            self.request.cancelled = True
            self.request = None

        self.uid += 1
        self.request = async(slow_method, ["arg1", "arg2"], self.uid,
                             self.ready_callback,
                             self.error_callback)


def slow_method(arg1, arg2):
    print "Starting slow method"
    time.sleep(1)
    return arg1 + arg2


if __name__ == "__main__":
    import sys
    app = QtGui.QApplication(sys.argv)

    obj = ExampleObject()

    dialog = QtGui.QDialog()
    layout = QtGui.QVBoxLayout(dialog)
    button = QtGui.QPushButton("Generate", dialog)
    progress = QtGui.QProgressBar(dialog)
    progress.setRange(0, 0)
    layout.addWidget(button)
    layout.addWidget(progress)
    button.clicked.connect(obj.fetch)
    dialog.show()

    app.exec_()
    app.deleteLater() # avoids some QThread messages in the shell on exit
    # cancel all running tasks avoid QThread/QTimer error messages
    # on exit
    Request.shutdown()

Po wyjściu z aplikacja musisz się upewnić, że anulujesz wszystkie zadania lub aplikacja zawiesi się do czasu zakończenia każdego zaplanowanego zadania

 6
Author: Matthew Levine,
Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/agent_stack/data/www/doraprojects.net/template/agent.layouts/content.php on line 54
2016-11-02 17:31:01

Bazując na metodach obiektów Worker wymienionych w innych odpowiedziach, postanowiłem sprawdzić, czy mogę rozszerzyć rozwiązanie, aby wywołać więcej wątków - w tym przypadku optymalną liczbę, którą maszyna może uruchomić i uruchomić wiele pracowników z nieokreślonym czasem zakończenia. Aby to zrobić, nadal muszę podklasować QThread - ale tylko przypisać numer wątku i "ponownie zaimplementować" sygnały "skończone" i "rozpoczęte", aby uwzględnić ich numer wątku.

Skupiłem się trochę na sygnałach pomiędzy główne gui, wątki i pracownicy.

Podobnie, inne odpowiedzi były bolesne, aby wskazać, że nie rodzicielstwo QThread, ale nie sądzę, że jest to prawdziwy problem. Jednak mój kod jest również ostrożny, aby zniszczyć obiekty QThread.

Jednak nie byłem w stanie rodzic obiektów worker, więc wydaje się pożądane, aby wysłać im sygnał deleteLater (), albo po zakończeniu funkcji wątku lub GUI jest zniszczony. Mój własny kod zawisł za to, że nie zrobiłem to.

Kolejnym ulepszeniem, które uznałem za konieczne, było ponowne zaimplementowanie closeEvent GUI (QWidget), tak aby wątki były poinstruowane, aby zamknąć, a następnie GUI czekało, aż wszystkie wątki zostaną zakończone. Kiedy grałem z innymi odpowiedziami na to pytanie, dostałem qthread zniszczone błędy.

Być może przyda się innym. Uważam to za przydatne ćwiczenie. Być może inni poznają lepszy sposób na ogłoszenie tego wątku tożsamość.
#!/usr/bin/env python3
#coding:utf-8
# Author:   --<>
# Purpose:  To demonstrate creation of multiple threads and identify the receipt of thread results
# Created: 19/12/15

import sys


from PyQt4.QtCore import QThread, pyqtSlot, pyqtSignal
from PyQt4.QtGui import QApplication, QLabel, QWidget, QGridLayout

import sys
import worker

class Thread(QThread):
    #make new signals to be able to return an id for the thread
    startedx = pyqtSignal(int)
    finishedx = pyqtSignal(int)

    def __init__(self,i,parent=None):
        super().__init__(parent)
        self.idd = i

        self.started.connect(self.starttt)
        self.finished.connect(self.finisheddd)

    @pyqtSlot()
    def starttt(self):
        print('started signal from thread emitted')
        self.startedx.emit(self.idd) 

    @pyqtSlot()
    def finisheddd(self):
        print('finished signal from thread emitted')
        self.finishedx.emit(self.idd)

class Form(QWidget):

    def __init__(self):
        super().__init__()

        self.initUI()

        self.worker={}
        self.threadx={}
        self.i=0
        i=0

        #Establish the maximum number of threads the machine can optimally handle
        #Generally relates to the number of processors

        self.threadtest = QThread(self)
        self.idealthreadcount = self.threadtest.idealThreadCount()

        print("This machine can handle {} threads optimally".format(self.idealthreadcount))

        while i <self.idealthreadcount:
            self.setupThread(i)
            i+=1

        i=0
        while i<self.idealthreadcount:
            self.startThread(i)
            i+=1

        print("Main Gui running in thread {}.".format(self.thread()))


    def setupThread(self,i):

        self.worker[i]= worker.Worker(i)  # no parent!
        #print("Worker object runningt in thread {} prior to movetothread".format(self.worker[i].thread()) )
        self.threadx[i] = Thread(i,parent=self)  #  if parent isn't specified then need to be careful to destroy thread 
        self.threadx[i].setObjectName("python thread{}"+str(i))
        #print("Thread object runningt in thread {} prior to movetothread".format(self.threadx[i].thread()) )
        self.threadx[i].startedx.connect(self.threadStarted)
        self.threadx[i].finishedx.connect(self.threadFinished)

        self.worker[i].finished.connect(self.workerFinished)
        self.worker[i].intReady.connect(self.workerResultReady)

        #The next line is optional, you may want to start the threads again without having to create all the code again.
        self.worker[i].finished.connect(self.threadx[i].quit)

        self.threadx[i].started.connect(self.worker[i].procCounter)

        self.destroyed.connect(self.threadx[i].deleteLater)
        self.destroyed.connect(self.worker[i].deleteLater)

        #This is the key code that actually get the worker code onto another processor or thread.
        self.worker[i].moveToThread(self.threadx[i])

    def startThread(self,i):
        self.threadx[i].start()

    @pyqtSlot(int)
    def threadStarted(self,i):
        print('Thread {}  started'.format(i))
        print("Thread priority is {}".format(self.threadx[i].priority()))        


    @pyqtSlot(int)
    def threadFinished(self,i):
        print('Thread {} finished'.format(i))




    @pyqtSlot(int)
    def threadTerminated(self,i):
        print("Thread {} terminated".format(i))

    @pyqtSlot(int,int)
    def workerResultReady(self,j,i):
        print('Worker {} result returned'.format(i))
        if i ==0:
            self.label1.setText("{}".format(j))
        if i ==1:
            self.label2.setText("{}".format(j))
        if i ==2:
            self.label3.setText("{}".format(j))
        if i ==3:
            self.label4.setText("{}".format(j)) 

        #print('Thread {} has started'.format(self.threadx[i].currentThreadId()))    

    @pyqtSlot(int)
    def workerFinished(self,i):
        print('Worker {} finished'.format(i))

    def initUI(self):
        self.label1 = QLabel("0")
        self.label2= QLabel("0")
        self.label3= QLabel("0")
        self.label4 = QLabel("0")
        grid = QGridLayout(self)
        self.setLayout(grid)
        grid.addWidget(self.label1,0,0)
        grid.addWidget(self.label2,0,1) 
        grid.addWidget(self.label3,0,2) 
        grid.addWidget(self.label4,0,3) #Layout parents the self.labels

        self.move(300, 150)
        self.setGeometry(0,0,300,300)
        #self.size(300,300)
        self.setWindowTitle('thread test')
        self.show()

    def closeEvent(self, event):
        print('Closing')

        #this tells the threads to stop running
        i=0
        while i <self.idealthreadcount:
            self.threadx[i].quit()
            i+=1

         #this ensures window cannot be closed until the threads have finished.
        i=0
        while i <self.idealthreadcount:
            self.threadx[i].wait() 
            i+=1        


        event.accept()


if __name__=='__main__':
    app = QApplication(sys.argv)
    form = Form()
    sys.exit(app.exec_())

I poniższy kod pracownika

#!/usr/bin/env python3
#coding:utf-8
# Author:   --<>
# Purpose:  Stack Overflow
# Created: 19/12/15

import sys
import unittest


from PyQt4.QtCore import QThread, QObject, pyqtSignal, pyqtSlot
import time
import random


class Worker(QObject):
    finished = pyqtSignal(int)
    intReady = pyqtSignal(int,int)

    def __init__(self, i=0):
        '''__init__ is called while the worker is still in the Gui thread. Do not put slow or CPU intensive code in the __init__ method'''

        super().__init__()
        self.idd = i



    @pyqtSlot()
    def procCounter(self): # This slot takes no params
        for j in range(1, 10):
            random_time = random.weibullvariate(1,2)
            time.sleep(random_time)
            self.intReady.emit(j,self.idd)
            print('Worker {0} in thread {1}'.format(self.idd, self.thread().idd))

        self.finished.emit(self.idd)


if __name__=='__main__':
    unittest.main()
 5
Author: cmoman,
Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/agent_stack/data/www/doraprojects.net/template/agent.layouts/content.php on line 54
2016-01-09 09:39:53